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ABSTRACT

Stereoselective synthesis of (+)-monocerin was accomplished via radical cyclization of a vinylic ether intermediate.

Monocerin is a polyketide natural product isolated from
several fungal sources which exhibits antifungal, insecticidal,
and plant pathogenic properties.1 The first total synthesis of
monocerin was reported by Mori in 1989,2 which was
followed by a biomimetic synthesis by Simpson and co-
workers.3 More recently, an efficient synthesis was reported
by Marsden and co-workers which features stereoselective
oxolane synthesis via allylsiloxane aldehyde condensation.4

In our retrosynthetic analysis, radical cyclization of a vinylic
ether intermediate was considered for the stereoselective
synthesis of (+)-monocerin (Scheme 1).

Simple vinylic ethers are known to participate in radical
cyclization reactions leading to oxacycle synthesis.5 More
recently, a convergent strategy was developed for the
assembly of polycyclic ethers via intramolecular acyl radical

addition to unactivated enol ethers.6 Compared to the
frequent use of stabilized vinylic ethers (for example,
�-alkoxyacrylates7) in radical cyclization, the relative paucity
of activity in simple vinylic ether radical cyclization is
perplexing; it may reflect the difficulty in the preparation of
proper enol ether precursors. We were interested for some
time in developing vinylic ether radical cyclization for
oxacycle synthesis and found that phenyl selenide functional-
ity was compatible with rhodium-catalyzed double-bond
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Scheme 1. Retrosynthetic Analysis
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migration8 in allylic ethers. This way, allylic ethers 2, 3,
and 4 were converted into vinylic ethers 5, 6, and 7. Radical
cyclization reaction of 5, 6, and 7 proceeded efficiently to
produce the oxacyclic products 8, 9, and 10 (Scheme 2).9

Radical cyclization of both E- and Z-isomers of 6 and 7
apparently produced only the “2,5- or 2,6-cis” products 9
and 10 exhibiting similar stereoselectivity encountered in the
reactions of stabilized vinylic ethers.7

The synthetic sequence for monocerin started with a stereo-
selective aldol reaction of the chiral imide 1110 and 3,4,5-
trimethoxybenzaldehyde, and subsequent reduction with lithium
borohydride produced the MOM-protected triol 12 in good
yield. Selective tosylation of the primary hydroxyl group,
O-alkylation with 1-bromo-2-butene, and phenylselenide sub-
stitution led to the allylic ether selenide 1311 (Scheme 3).

Double-bond migration was catalyzed by the Wilkinson
catalyst, and the product vinylic ether 14, which was obtained
as a ∼2:3 mixture of E- and Z-isomer, was treated with

tris(trimethylsilyl)silane in the presence of triethylborane. This
way, oxolane 15 was obtained in 74% yield from 13. Formation
of other stereoisomeric products was not noticed.

The MOM protecting group participated in the next reaction
as dioxatricycle 16 was obtained from 15 via treatment with
titanium(IV) chloride. Ruthenium-catalyzed oxidation12 of 16
led to lactone 17, which was converted into (+)-monocerin (1)13

upon partial demethylation2 with boron tribromide.14

The vinylic ether radical cyclization strategy described in
this communication provides a direct and stereoselective
route to (+)-monocerin. The scheme may be adapted for
synthesis of a large number of oxacyclic natural products,
which will be the focus of future studies.
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Scheme 2. Radical Cyclization of Vinylic Ethers

Scheme 3. Total Synthesis of (+)-Monocerin
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